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Mushroom Tyrosinase: Recent Prospects
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Tyrosinase, also known as polyphenol oxidase, is a copper-containing enzyme, which is widely
distributed in microorganisms, animals, and plants. Nowadays mushroom tyrosinase has become
popular because it is readily available and useful in a number of applications. This work presents a
study on the importance of tyrosinase, especially that derived from mushroom, and describes its
biochemical character and inhibition and activation by the various chemicals obtained from natural
and synthetic origins with its clinical and industrial importance in the recent prospects.
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1. INTRODUCTION the pathway are the hydroxylation of monophenadiphenol

Mushrooms have been consumed by humans since ancien{monophenolasg or cresplase activity) and the oxidati_orl of
times not only as a part of the normal diet but also as a delicacyd'phenc?I too-quinones (diphenolase or catecholase activity),
due to their desirable taste and aroma. The use of mushroomd?0th using molecular oxygen followed by a series of nonenzy-
with therapeutic properties is growing day by day due to the Matic steps resulting in the formation of melanin (18, 17)
range of side effects caused by conventional medicines. Among@s shown inScheme 1, which plays a crucial protective role
natural products, mushrooms have been recognized as poten@gainst skin photocarcinogenesis. The production of abnormal
candidates in clinical studies because they are readily obtainedmelanin pigmentation (melasma, freckles, ephelide, senile
in relatively large quantities and are inexpensive. Over the pastlentigines, etc.) is a serious esthetic problem in human beings
30 years the enzyme tyrosinase (polyphenol oxidase, EC(18). In fungi, the role of melanin is correlated with the
1.14.18.1) has received considerable attention as an indispendifferentiation of reproductive organs and spore formation,
sable tool in the performance of studies on a wide range of virulence of pathogenic fungi, and tissue protection after injury
topics. Since the first biochemical investigations were carried (19—21). In addition, tyrosinase is responsible for the undesired
out in 1895 on the mushrooRussula nigricans, the cut flesh  enzymatic browning of fruits and vegetabl@g)(that takes place
of which turned red and then black on exposure to &)f &  during senescence or damage at the time of postharvest handling,
number of studies have been made to find the culprit mainly \hich makes the identification of novel tyrosinase inhibitors
responsible for the color change, which is widely distributed gyiremely important. However, besides this role in undesired
through the phylogenetic scale from lower to higher life forms .\ ning  the activity of tyrosinase is needed in other cases
(2—6), although, in some cases, it is not detectable due 10 (,iqing cocoa, fermented tea leaves) where it produces distinct

endoge_nous 'nh'b't°r§(8.)' This enzyme was Iatgr identified organoleptic properties. Mushroom tyrosinase is popular among
as tyrosinase, the active site of which contains a binuclear copper o . . - -

. ; - - researchers as it is commercially available and inexpensive and
cluster in the common mushroomdaricus bisporus) and in

human malignant melanoma tyrosina8el(©). In higher plants also there are easy tools to investigate the feature of this enzyme.
and fungi, tyrosinases occur in various isoforms such as Among mushroomsA. plsporu3|s the. most commonly.con- )
immature, mature latentL{, 12) and active forms; however sumed species worldwide, and also it is a representative of its
the biochemical description regarding the kinetic characterization family; for this reason most of the research work is being carried
and relationship between these isoforms is yet to be established®Ut on this particular species. Moreover, all of the tyrosinases
The biosynthetic pathway for melanin formation, operating in Obtained from various species of mushroom have similar
insects, animals, and plants, has largely been elucidated by Rapeproperties, so most of the studies reported in the present paper
(13), Mason (14), and Lerner et alg). The first two steps in ~ are related té\. bisporus However, it is inevitable that we will
be selective in our coverage, but an attempt will be made to
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Scheme 1. Pathway of Melanogenesis (13, 16, 17)
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various sources and its clinical and industrial importance in tyrosinase sequence. Basically, the enzyme tyrosinase has three

recent prospects. domains, of which the central domain contains two Cu binding
sites, called Cy and Cy. Several conserved sequences are

2. BIOCHEMICAL CHARACTERISTICS OF MUSHROOM found to be present in tyrosinases from different sources as

TYROSINASE shown inFigure 1. In fact, when all tyrosinase sequences were

A number of research papers and reviews@, 23) have compared, the only conserved domain seems to be the central
already been published on the structural and kinetic aspects ofcqpper-blndlng domain, which also shqres sequence homology
the enzyme tyrosinase; therefore, under this section we will with hemocyanins (Hcs), copper-containing oxygen carriers from
briefly discuss its biochemical character in relation to domain the hemolymph of many molluscs and arthropo@8)( Six
structure, reaction mechanism, and substrate specificity with COnserved histidine residues (29) bind a pair of copper ions in

special reference tA. bisporus. the active site of the enzyme tyrosinase, which interact with
2.1. Domain Structure. Tyrosinase fromA. bisporuswas both molecular oxygerfFigure 2) and its phenolic substrate.

reported to be a heterotetramer comprising two heavy (H) and The location of cysteine (Cys) also plays an important role in

light (L) chains with a molecular mass of 120 kD24j. Later, the formation of disulfide linkages, which stabilize protein

Robb and Gutteridge26) identified two types of heavy chains ~ structure. The number of Cys residues varies from one organism
He and H for the isozymes, btL, and HAL,, corresponding to another, as along the N-terminal and central part of the
to a and 3, respectively. The two monomeric isoforms with ~protein, human and mouse tyrosinases have 17 Cys residues
both catecholase and cresolase activities were isolated from theand plants have 11, whereas the C-terminal domain contains 1
fruit bodies of the mushroom26) and occur as monomeric ~ Cys residue. Interestingl. bisporus Neurospora crassand
single-chain polypeptides with a molecular mass of 47 kDa prokaryotic tyrosinase contain 0 or 1 Cys in mature protein. In
under native conditions. The complete sequence of a tyrosinasemushroom tyrosinase sequence only 2 Cys residues are reported
clone for A. bisporushas been established by Wichers et al. in the C-terminal domaing). Various inhibitors and activators
(27); it showed a high degree of similarity with mushroom modulate the enzyme activity by binding at this site. To
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Figure 1. Domain structure of tyrosinases from different groups. Conserved Cu binding sites (CuA and CuB) are represented by cross-hatched areas
along with some other sequences. Arrows indicate susceptible cleavage site in the enzyme (6).

Scheme 2. Catalytic Cycles for the (I) Hydroxylation of Monophenols
(M) and (Il) Dehydrogenation of o-Diphenols (D) to o0-Quinones by

Tyrosinase (193)
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Figure 2. Schematic representation of binuclear copper site. C = Cu

ion, O = oxygen, and H = His-N (6). 4

determine the accessibility of various ligands toward the }ﬁ Q

binuclear copper active site, a number of kinetic studies with

several compounds (CN phenols, azide, or mimosine) were Foxy-M C Edeoxy

carried out, and it was found that the large-sized ligands have

a higher affinity for the active site as compared to smaller ones

(30, 31). Furthermore, this is also supported by the presence of g+

diverse and large-sized substrates/inhibitors of the enzyme

tyrosinase (6). Q + HO
2.2. Reaction MechanismTyrosinase catalyzes two distinct

oxidation reactions as shown8theme 2. In cycle |, tyrosinase

accomplishes the oxidation of monophenols by oxygen as it

passes through four enzyme stategedk Eoxy» Eoxy—m, and o

Emet—-p); in cycle I, o-diphenols are oxidized as the enzyme Q 2H’r

30t

S%

passes through five enzyme stategeff, Eoxys Eoxy-b, Emet

and Eqet-p). The two cycles lead to the formation @fquinones,
which spontaneously react with each other to form oligomers
(23, 32). A characteristic feature of tyrosinase is a typical lag
time related to its monophenolase activity. The hydroxylation reductants (ascorbate, hydroxylamine, and hydroquinone) can
of monohydroxyphenols by tyrosinase is as follows: 2 mono- also shorten the lag period but less effectively than
hydroxyphenolst O, + AH,; — 2 o-dihydroxyphenolst H,O dihydroxyphenols (37). Furthermore, the lag is dependent on
+ A, where AH = reductant. Tyrosinase has two separate various factors such as substrate and enzyme concentration,
binding sites in its active center, one for the substrate (mono- enzyme source, pH of the medium, presence of a hydrogen
hydroxyphenol) and another for the reductamtiihydroxyphen- donor such as L-dopa or other catechols and transition metal
ol or exogenously added Adi(33). When exogenous AHs ions (34). The absence of a lag period for diphenolase activity
not added, the hydroxylation reaction is characterized by a lagcan be elaborated by the binding and transformation of
period, which is a dynamic equilibrium between the enzymatic o-diphenols intm-quinones by the ke and Ry, forms, which

and chemical steps to obtain the steady state with respect toare present in the activity of the resting tyrosina®8)(

the diphenol concentratior23, 34); to reach such a concentra- 2.3. Substrate StereospecificityThe principal endogenous
tion, a small amount of enzyme must be present in the oxy form substrates of mushroom tyrosinaseatgrosine,p-aminophen-
(35). The lag period is an autocatalytic mechanism, which ol, and its condensation product with glutamateglutaminyl-
depends on the elaboration of dopa when tyrosinase acts ord-hydroxybenzene (GHB), all originating from the shikimate
tyrosine as the substrate8§). Exogenous addition of the pathway (38). According to Jimenez and Garcia-Carm@8a (

HO OH
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Scheme 3. Reaction Schemes for the Oxidation by Tyrosinase of Three Different Types of Substrates (39)
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it is possible to divide substrates of tyrosinase into three groups,diphenolase activity of mushroom tyrosinase with several
depending upon the developmenbeduinonic product$cheme enantiomorphst-, L-, andbL-tyrosine, methyltyrosine, dopa,

3): methyldopa, and isoprenaline) of monophenols @diphenols
(i) o-Quinone products are cyclizable and sustain intramo- was assayed by Espin et &2). The lowelKy, value observed
lecular 1,4-addition to the benzene ring. for L-isomers than fop-isomers indicated stereospecificity in
(i)) 0-Quinone products are uncyclizable but can undergo a the @fflnlty of tyrosinase tqward its substrates.. They further
water addition (40). elucidated that the phenolic compounds containing electron-

(iii) o-Quinone products are highly stable through the reaction Wthdrawing groups are poor substrates for tyrosinase as
(35). Tyrosinase is able to use mono-, di-, and trihydroxyphenols compared to the electron-donating groups. Moreover, affinity

as substrates but has greater affinity for dihydroxyphenols. Properties (1/k) and catalytic power\(ma/Km) of tyrosinase
Furthermore, it was also reported that among the monohydroxy-ncrease with a decrease in the size of the side chain in the
phenols p-cresol and tyrosine), dihydroxyphenols (catechol, &romatic ring of its substrates.

L-dopa, D-dopa, catechin, and chlorogenic acid), and trihy-
droxyphenols (pyrogallol), catechol showed maximum activity, 8. STUDIES ON MUSHROOM TYROSINASE INHIBITORS
indicating that the enzyme is most active with catechol as  Although~98—99% of the tyrosinase in mushroom is present
substrate (41). The stereospecificity of monophenolase andin its latent form, the remaining active form has a potential for
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Figure 3. Structures of some mushroom tyrosinase inhibitors.

enzymatic browning during maturity or damage at the time of investigated for mushroom tyrosinase inhibitory activity; these
postharvest handling, which causes severe economic losses tcompounds differ from one another in the potency and type of
mushroom industries. The most commonly applied inhibitor of inhibition imposed on the enzyme as represented@ahle 1.

the discoloration process currently is sulfite, which, however,  3.1.1. Inhibitors from Higher Plants. A review of the

is meeting increasing resistance (43). Furthermore, tyrosinaseliterature indicates that inhibitors are categorized into two main
inhibitors may be clinically used for the treatment of some skin subgroups, namely, polyphenols and aldehydes and other
disorders associated with melanin hyperpigmentation and arederivatives.

also important in cosmetics for skin whitening effectl{ (i) Polyphenols. Polyphenols are a group of chemical
46), so there is a need to identify the compounds that inhibit compounds that are widely distributed in nature and also known
mushroom tyrosinase activity. A number of tyrosinase inhibitors as vegetable tannins because they are responsible for the colors

from both natural and synthetic sour¢€ggure 3) that inhibited
monophenolase, diphenolase, or both of these activiliglslés
1 and?2) have been identified.

3.1. Inhibitors from Natural Sources. As plants are a rich

of many flowers. Some of them are complex compounds present
in the bark, root, and leaves of plants, whereas others are simple
compounds present in most fresh fruits, vegetables, and tea.
Some potent tyrosinase inhibitory flavanoides such as kaempfer-

source of bioactive chemicals, which are mostly free from ol (47—49), querceting0, 51), kurarinone, and kushnol BZ)
harmful side effects, there is an ongoing effort to search for have been isolated from various plants. A lot of work has been
tyrosinase inhibitors from them. A broad spectrum of com- done by Kubo et al.§3) to identify and characterize inhibitors
pounds have been obtained from the natural products andfrom natural sources and to establish the relationship between
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Table 1. Some Mushroom Tyrosinase Inhibitors from Natural Sources
inhibitor source type of inhibition IDso (MmM) refd
kaempferol Crocus sativus competitive® 0.230 49
quercetin Heterotheca inuloides competitive® 0.070 49
kurarinone Sophora flavescens noncompetitive® 0.005 52
ECG green tea competitive® 0.035 55
GCG green tea competitive® 0.017 55
EGCG green tea competitive® 0.034 55
1,2,3,4,6-penta-O-galloyl-5-p-glucose Galla rhois noncompetitive® 50 56
oxyresveratrol Morus alba noncompetitive® 0.001 62
anacardic acid Anacardium occidentale competitive® 60
p-coumaric acid Panax ginseng mixed® 3.65 61
arbutin Gvae grsi Ilcompetitive 0.04 112
uncompetitive®
aloesin Aloe vera Inoncompetitive 0.10 112
3,4-dihydroxycinnamic acid Pulsatilla cernua noncompetitive® 0.97 68
4-hydroxy-3-methoxycinnamic acid ,Pulsatilla cernua noncompetitive® 0.33 68
cuminaldehyde cumin seed noncompetitive® 0.05 67
cumic acid cumin seed noncompetitive® 0.26 67
anisaldehyde anise oil noncompetitive® 0.38 68
anisic acid anise oil noncompetitive® 0.68 68
trans-cinnamaldehyde Cinnamomum cassia competitive® 0.85 63
(2E)-alkenal (Cy) Oliva olea noncompetitive® 13 64
2-hydroxy-4-methoxybenzaldehyde Mondia whitei, Rhus vulgaris, Scleroca caffra mixed® 0.03 65
la Agaricus hortensis competitive® 74
b Agaricus hortensis noncompetitive® 74
agaritine Agaricus bisporus uncompetitive® 76
competitive®
metallothionein Aspergillus niger mixed? 0.22 75
mixed® 20.2

a Reference cited for IDsp values. P wrt dopa. ©wrt tyrosine. @wrt catechin. & wrt chlorogenic acid.

Table 2. Some Mushroom Tyrosinase Inhibitors from Synthetic
Sources

inhibitor type of inhibition [Dso (MM) refd
cinnamaldehyde noncompetitive® 0.97 68
cinnamic acid mixed® 0.70 68
captopril noncompetitive® 77
competitive®
methimazole mixed® 78
cupferron competitive® 0.001 81
tiron 400 83
2-methoxycinnamic acid noncompetitive® 0.34 68
3-methoxycinnamic acid noncompetitive® 0.35 68
4-methoxycinnamic acid noncompetitive® 0.34 68
4-substituted benzaldehydes competitive® 72
L-mimosine competitive® 86
kojic acid mixed® 0.014 52
tropolone competitive? 88
4-substituted resorcinol competitived 73
dimethy! sulfide competitive® 92
benzoic acid mixed® 0.64 67
benzaldehyde noncompetitive® 0.82 67
p-hydroxybenzaldehyde competitive® 1.2 64
citral noncompetitive® 15 64

a Reference cited for IDsp values. P wrt dopa. ©wrt tyrosine.

their inhibitory activity and structure. According to them, all
flavanoides inhibit the enzyme due to their ability to chelate
copper in the active site. However, this condition is applicable
only if the 3-hydroxy group is free. They further elucidated that
the 3-hydroxy group is not an essential requirement for inhibition
as other types of flavonoids such as luteoli#O4glucoside and
luteolin 7-O-glucoside, lacking this 3-hydroxy group, still
showed inhibitory activity48). Recently, Badria and el Gayyar
(54) found that flavonoids containing arketo group possess
potent tyrosinase inhibitory activity. This may be explained in
terms of similarity between the dihydroxyphenyl group in
L-dopa and thex-keto group in flavonoids. The results of this
study revealed a new type of tyrosinase inhibitor from natural

origin. Application of these compounds will further be examined
for treatment of hyperpigmentation. Another important com-
pound of this group is gallic acid, which occurs as multiple
esters withp-glucose, and their esters are widely used as
additives in food industries. Various gallic acid derivatives have
been isolated from green tea (55) a@dlla rhois (56), and
some of them were identified as strong tyrosinase inhibitors.
Studies indicate that the flavon-3-ol skeleton with a galloyl
moiety at the 3-position is an important structural requirement
for optimum inhibition of tyrosinase activity. It is interesting
to note that 1,2,3,4,6-penta-O-galloylg8glucose (PGG), the
active compound isolated fror®. rhois (56), has a potent
tyrosinase inhibitory activity, although this is not consistent with
previous reports that the tyrosinase inhibitory strength of
aromatic carboxylic acids decreases with the esterification,
hydroxylation, or methylation of the benzene ring7( 58).
However, gallic acid and its short alkykC10) chain esters
were oxidized by tyrosinase as substrates, yielding the yellow
oxidation products, but the long alkyl (>C10) chain esters
inhibited the enzyme without producing the pigmented products,
indicating that the carbon chain length is related to their
tyrosinase inhibitory activity. In other words, the gallates with
increasing hydrophobicity of the molecules become more
resistant to being oxidized by the enzyme due to disruption of
the tertiary structure of the enzyme (59). In various other
bioactive constituents such as cardol derivatié®),(addition

of a hydroxy group increased whereas addition of a methyl
group decreased the inhibitory activity, and also the unsaturated
alkyl side chain exhibited stronger inhibition as compared to
the saturated one. It was observed thatoumaric acid 1)
inhibited both monphenolase and diphenolase activities and a
polar hydroxy group at the para position increased the monophen-
olase inhibitory activity, whereas it decreases diphenolase
inhibitory activity. Strong tyrosinase inhibitory activity was
reported by oxyresveratrol (62), due to the presence of a
maximum number of hydroxy groups in the ring. However, a
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clear explanation regarding their inhibitory activity and structure some of these inhibitors are from drugs, whereas other are

criteria is lacking. simple chemicals.

(ii) Aldehyde and Other Derivatives. A large number of (i) Drugs. Captopril, an antihypertensive drug §p1-(3-
aldehydes and other derivatives were also isolated and characmercapto-2-methylpropionyl)-proline], is able to prevent
terized as mushroom tyrosinase inhibitors such ti@s- melanin formation (77) by irreversibly inhibiting both mono-

cinnamaldehyde (63), (2E)-alkenals (64), 2-hydroxy-4-meth- and diphenolase activities of mushroom tyrosinase in noncom-
oxybenzaldehyde (65), anisaldehy@®), cuminaldehyde and  petitive and competitive manners, respectively, as well as by
cumic acid 67), and 3,4-dihydroxycinnamic acid and 4-hy- scavenging the generategtquinones to form a colorless
droxy-3-methoxycinnamic acidb8). As the aldehyde group is  conjugate. The inhibition of both monophenolase and diphen-
known to react with biologically important nucleophilic groups olase activities of tyrosinase by captopril showed positive kinetic
such as sulfhydryl, amino, and hydroxy groups, so it has been co-operativity, which arose from the protection of both substrate
proposed that its inhibitory effect is due to the formation of a ando-quinone against inhibition by captopril. The drug forms
Schiff base with the primary amino group of the enzyme. both a coppercaptopril complex and a disulfide bond between
Comparison of the inhibitory activities of various aldehydes and captopril and cysteine-rich domains at the active site of the
closely related compounds such as cinnamic acid, anisic acid,enzyme. An antithyroid drug, methimazole (1-methyl-2-mer-
cumic acid, and benzoic acid proved cuminaldehyde to be the captoimidazole), that acts as a tyrosinase inhibitor affects both
strongest inhibitor (67). It is interesting to note that electron- mono- and dihydroxyphenolase activities of mushroom tyrosi-
donating groups (isopropyl and methoxy) at the para position nase (78). It is interesting to note that both drugs interacted
in cuminaldehyde provide stability to the Schiff base at the with mushroom tyrosinase in a similar manner but the types of
active site of the enzyme through inductive effect. In the case inhibition were different.
of (2E)-alkenals the hydrophobic alkyl chain length from the iy Chemicals. A number of chemicals such as hydrogen
hydrophilic enal group seems to be related to their inhibitory peroxide, hydroxylamine, Tiron, thiols, and aromatic carboxylic
potency, which may be due to better association of the longer 5cids have been reported for their anti-tyrosinase activity.
alkyl chain with the hydrophobic protein pocket close to the pesjdes these, some other chemicals are also reported and
binuclear copper site (69—71). Except for 2-hydroxy-4-meth- c|assified as slow binding inhibitors depending upon their action
oxybenzaldehyde, the above-indicated aromatic aldehydes wergnechanism. Hydrogen peroxide Bb) inactivates mushroom
dgscribeq as noncompetitive tyrosinase inhipitors by Kubo and tyrosinase in a biphasic manner, with the rate being faster in
Kinst-Hori (64, 66, 67). However, a contradictory statement  the first phase than in the secor@d). Enzyme inactivation is
regarding mo_de of inhibition of the _aldehydes was recently dependent on pD, concentration and independent of pH, and
reported by Jimenez et al’%), according to which all of the  jnpipition is faster under anaerobic condition than under aerobic
4-substituted benzaldehyde derivatives behave as competitiveye. Copper chelators (tropolone and sodium azide) and
inhibitors of L-dopa oxidation. In the case of acid derivatives, gypstrate analoguesifiimosine -phenylalaninep-fluorophenyl-
the mechanism of inhibition involves the formation of a copper alanine, and sodium benzoate) protect the enzyme against
carboxylic acid complex at the binuclear copper site of the jnactivation by HO,, indicating that C&* at the active site of
enzyme {1); further substitution of a phenolic group atthe para myshroom tyrosinase is essential for inactivation byOH
position increased the extent of inhibitionQ). Another inhibitor, hydroxylamine, at low concentration (33 mM)
Most of the above inhibitory studies were made on the basis shortens the lag period of tyrosine hydroxylation, whereas the
of D5 values, a constant to determine extent of inhibition, relatively high concentration (>20 mM) inhibits-dihydroxy-
which indicates the inhibitor concentration required for 50% phenolase activity and lowers the extent of final pigment
inhibition. However, it is not a valid parameter for some kinds production, the inactivation rate being faster under anaerobic
of tyrosinase inhibitors 43) and also is related to only condition. It was found that N¥DH changes the spectra of
diphenolase activity. Therefore, more reliable kinetic parameters o-quinones, which is attributed to oxime formation. As a result,
are required to evaluate both the mono- and diphenolaseapparent inhibition exerted by NBH on theo-dihydroxyphen-
activities of tyrosinase. olase activiy is due to both spectral changes in pigmented
3.1.2. Inhibitors from Fungi. Besides higher plants, some product formation and inactivation of the enzyme by 0
compounds from fungal sources have also been identified and(80). The most powerful tyrosinase inhibitor among N-substi-
reported for their inhibitory activity toward mushroom tyrosi- tutedN-nitosohydroxylamines was found to blecyclopentyl-
nase. Madhosingh and Sundbeitfl)(isolated, purified, and  N-nitrosohydroxylamine (1§ = 0.6 uM). The removal of a
characterized two inhibitors from mushro@garicus hortensis nitroso or hydroxy moiety resulted in total loss of enzyme
Inhibitor la inhibited the enzyme competitively, wherebs inhibitory activity, suggesting that both of these groups are
noncompetitively inhibited the enzyme, as revealed by the essential for activity, probably by interacting with the copper
Lineweaver-Burk plots. Metallothionein frord\spergillus niger ion at the active site of the enzym@&1(). The compound Tiron
(75) has strong avidity to chelate copper at the active site of has shown multiple effects on mushroom tyrosinase at various
mushroom tyrosinase, thereby acting as a strong inhibitor. concentrations. At low concentration, Tiron acts as a weak
Another possible mechanism for such an inhibitory effect could reductant as compared to L-dopa, so it prevents the few L-dopa
be explained by the presence of sulfhydryl amino acids in the molecules endogenously formed during tyrosine hydroxylation
metallothionein, which bind witlo-quinones to form colorless ~ from accessing the enzyme, which are required as reductant for
thioesters. Recent reports showed that agaritine fkohisporus the hydroxylation reactiorB), thereby extending the lag period
inhibited mushroom tyrosinase in vitro and displayed uncom- of tyrosine hydroxylation. However, at higher concentrations it
petitive inhibition of L-dopa and competitive inhibition of acts as an effective reductant, thus shortening the lag period of
L-tyrosine, implying that agaritine is metabolized by the tyrosine hydroxylation (83).
monophenolase activity (76). Cysteine and a wide range of aromatic carboxylic acids were
3.2. Inhibitors from Synthetic Origin. A variety of inhibitors inhibitors for the activity of commercially purified mushroom
reported from synthetic origin are listedTable 2 Interestingly, tyrosinase. Competitive, noncompetitive, mixed, or uncompeti-
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Scheme 4. Action Mechanism for Slow Binding Inhibitors (92) within the sample 94), which causes enzyme inactivation in
overheated regions only and in colder regions the enzyme may
D Q D\ Q . . . .
B, \ _» gD A E 5 _p Eoee not be completely inactivated; moreover, it causes internal water
i v vaporization with associated damage to the mushroom texture
I (95). The application of a combined microwaveot water
o treatment is slightly better in terms of final product qual®@g)
BoyyT = B, T In any case, microwave blanching is not very successful in the
aD = o-diphenol, Q = o-quinone, and | = inhibitor. Inhibitor binds to the thOd I.nd:Jstry EXCEF;]I flodr Sorrllte |solateotl. appllt():atlolrls. égrlous
oxy form of the enzyme and slowly isomerizes to give an enzyme—inhibitor chemicals such as haliae S_a S, af(?ma IC car .oxy ic adids ( )
complex (Eogl*). 98) and other compounds with reducing properties such as sulfite

tive inhibitions were obtained depending on the nature of the (99), ascorbic acid and 'ts. derivative£00, 101), and. th.'o.l
inhibitor and the method used for the determination of the °°mP°U“dS such as CYSIEIFfEOB,_lO3)' are kpown to inhibit
enzyme activity (58). Lindbladh et aB4) studied the effect of tyrosinase. _The effect of asco_rblc acid, sodium blsulfate_, and
the catalase on the inactivation of tyrosinase by ascorbic acid, Other reducing agents on tyrosinase has been controversial over
cysteine, and glutathione. Ascorbic acid inactivated tyrosinase, the years104); moreover, the use of sulfites is becoming more
but addition of catalase prevented this inactivation and it was and more restricted due to potential health haza4@3. Other
found to be dependent on oxygen, whereas inactivation by alternative methods were also proposed such as formulation
cysteine and glutathione was independent of the oxygen andwithout sulfite (105) or new products with a stabilized form of
addition of catalase increased enzyme inactivation at high thiol ascorbic acid ang-cyclodextrins (106) and plant sulthydryl
concentrations and the inactivation was independent of oxygen.proteases (107). Presently, the use of 4-hexylresorcinol is
Large amounts of serum albumin protected tyrosinase from considered to be safe in the food industry and is quite effective
inactivation by ascorbic acid but did not prevent inactivation in prevention of shrimp melanosi@8,109) and for browning

by cysteine/glutathione. Benzoic acid inhibited 3, and y control in fresh and dried fruit sliced {0). However, as safety
isozymes ofA. bisporustyrosinase competitively for cresolase s of prime concern for an inhibitor to be used in food industry,
reaction, but showed partial uncompetitive inhibition éoand there is a constant search for better inhibitors from natural

f isozymes and a simple competitive inhibition foisozyme sources as they are largely free of any harmful side effects. Many
in catecholase reaction (57). Dihydroxybenzoic acids (DBA) o the inhibitors described in this review are flavor condiments
such as 3,4-DBA, 3,5-DBA, and 2,4-DBA inhibited L-dopa nq are listed as food flavor ingredientsFianaroli’'s Handbook

oxidatiqn by mushroom tyro_sinas@Eo. 2,3-DBA.ar.1d 2,5-DBA of Flavor Ingredients(111), which makes their use favorable
at relatively low concentrations had a synergistic effect on the in food industries

reaction due to the ability of thew-quinones to oxidize DL- ) d ¢ . inhibi .
dopa nonenzymetically, whereas at higher concentration they ~S-3-2- Cosmetic Industry.Use of tyrosinase inhibitors is

inhibited the rate of DL-dopa oxidation. becoming increasingly important in the cosmetic industry due
Another group of compounds suchiamimosine 86), kojic to their skin-whitening effects. A number of tyrosinase inhibitors
acid 87), tropolone 88), and 4-substituted resorcinolg3, are reported from both natural and synthetic sources, but only

having structural similarity to phenolic substrates and showing @ few of them are used as skin-whitening agents, primarily due
competitive inhibition with respect to these substrates, are known to various safety concerns. For example, linoleic acid, hinokitiol,
as slow binding inhibitors§9—91). The reaction mechanism kojic acid, naturally occurring hydroquinones, and catechols
of these inhibitors is represented Stheme 4according to were reported to inhibit enzyme activity but also exhibited side
which all of these slow binding inhibitors compete with a second effects (46). Currently, arbutin and aloesin are used in the
molecule of L-dopa to bind to the oxy form of the enzyme, cosmetic industry as whitening agents because they show strong
which is an obligatory intermediate in the catalytic turnover, inhibition toward the tyrosinase enzyme, which is responsible
and thus the presence of the substrate is necessary for the actiofor pigmentation in human beings. Arbutin, a hydroquinone
mechanism of slow binding inhibitors. Recently, dimethyl glycoside, and aloesin, a C-glycosylated chromone, were isolated
sulfide (DMS) was also reported as a slow binding competitive from leaves ofGuae grsiand Aloe vera, respectively, and
inhibitor of mushroom tyrosinase and is the first volatile studied for their inhibitory effectsl12). Arbutin was reported
inhibitor of tyrosinase to be characterize@. DMS has a g inhibit the enzyme activity competitivel\1{3), whereas in
physiological role within plant tissues as its high concentration .. siher contrasting report Funayama et BL4{ suggested that
inhibits endogenous tyrosinase, thereby protecting the plant from ¢ 44 forms of arbutin onlys-arbutin inhibited both tyrosinase
premature phenolic oxidation. . . activities from mushroom and mouse melanoma noncompeti-
3.3. Importance of Mus_hroc_)m T_yrosmase Inh|b|tor_s. tively and thata-arbutin inhibited only the tyrosinase from
3.3.1. Food Industry.Browning in fruits and vegetables is of . L o .
mouse melanoma by mixed-type inhibition. In addition, Jin et

great concern to growers and the food industry as it impairs . - .
the organoleptic properties of the product. The rate of enzymatic al. (119 studied the e.ffe(.:t .Of cotrgatment O.f ‘?"O.es'” and arl.)utlln
and found that both inhibit tyrosinase activity in a synergistic

browning depends on the concentration of active tyrosinase and . ) ; AN
phenolic compounds, oxygen availability, pH, and temperature Manner by acting through different mechanisms; aloesin inhibits
conditions in the tissue2@). Thus, it is necessary to identify noncompetltlvgly, .w.hereas qrbutm |nh|p|ts compe’qu\./ely. Taken
various methods to stop enzymatic browning caused by tyro- together they inhibit melanin production synergistically by a
sinase. The current conventional techniques to avoid browning combined mechanism of noncompetitive and competitive inhibi-
include use of autoclave and blanching methods to inactivate tions. Thus, all of the above findings indicate that it is beneficial
tyrosinase, but these processes cause important weight ando use aloesin and arbutin as a mixture for depigmentation effect
nutrient losses in the produ@3). Another alternative approach  because the cotreatment cuts down the effective doses of these
is the use of microwave energy, but it also suffers from the agents for the same inhibitory effect on tyrosinase activity and
main disadvantage that a temperature gradient is generatedccan reduce adverse side effects.
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5. CLINICAL STUDIES ON MUSHROOM TYROSINASE

For many years mushroom tyrosinase has been studied for

its use in cosmetics as well as in food industries. However,

CH various recent papers have exposed some previously unexplored
aspects of mushroom tyrosinase in clinical studies. Some of them
are described below.

5.1. Marker of Vitiligo. Vitiligo is an autoimmune disease,
characterized by hair hypopigmentation and total melanocyte
depletion in the basal layer of the epidermis. Tyrosinase is the
enzyme responsible for melanin production in normal melano-

H > 5 cytes and melanoma cells and is known to be an autoantigen in
C various autoimmune disorders. Immunological aspects of vitiligo
o showed the generation and presence of autoantibodies directed
PH < 5| [SDs] against melanocyte antigens in the patients’ sera. Using solid-
phase ELISA on mushroom tyrosinase, higher titers of IgG anti-
tyrosinase antibodies were found in patients with diffused
vitiligo as compared to localized vitiligo. These anti-tyrosinase
autoantibodies from vitiligo patients’ sera can be recovered by
exploiting its affinity toward tyrosinase. These antibodies neither
cross-react with other autoantigens in different autoimmune
disorders nor block tyrosinase activity, which shows that they
are not reacting with the catalytic site of the enzyme. This
indicates that tyrosinase acts as an autoantigen and serves as a
marker for vitiligo (L35). In an attempt to prevent melanocyte
Figure 4. pH-dependent activation of latent mushroom tyrosinase by SDS destruction Zehtab et al186) administered tyrosinase frof
(130). bisporusorally in animal models, which resulted in diminished
cell-mediated immune response, and it was suggested that this
4. STUDIES ON MUSHROOM TYROSINASE ACTIVATORS oral administration is closely linked to suppression of cellular

The enzyme tyrosinase can be found in either latent or active response to autoantigeriss(;, 138. Therefore, it will be useful

form as reported above; the latent tyrosinase represe9g6 in longitudinal studies to determine the relationship between
of total tyrosinase activit’y in mushroom&16). Tyrosinases can the clinical features of vitiligo and tyrosinase antibody levels.
be activated by a broad spectrum of substances, in crude tissue ©-2- Role in Cancer. Contradictory results are available
preparation. The activation of latent tyrosinase from plant and regarding the role of tyrosinase in cancer as some papers suggest
insect sources has been reported by different treatments or agent@ tUmor-suppressing effect of mushroom tyrosinase, whereas
such as anionic detergents such as SDIF'¢-120), acid shock others predict a possible role in mutagenicity. Vogel etl89(

(121, 122), fatty acids (123124), alcohols (125), proteases reported that a stable phengt.-glutaminyl-4-hydroxybenzene

(126-128), and pathogen attack29. However, there are very (G.HB).’ is oxidized by tyrosinase to a quinqne and a second
few reports on the activation of latent tyrosinase from mushroom OX|dat|o_n product, Wh'Ch. together SUppress mltochoneraI energy
as source material. Recently, activation of mushroom tyrosinasepmducuon and synthe3|s of nucleic ac!ds and proteins. Incuba-
by SDS (30), benzyl alcohol(31), and serine proteast3p) tion of cultured murine L1210 leukemia and B-16 melanoma
has been rep;orted. The activatio,n process is characterized b gells with purified quinone blocked tumor growth in the mice,

. . . Y%ut when these cells were incubated in the presence of GHB,
the presence of a lag periad prior to the attainment of steady- tumor suppression was observed only in B-16 melanoma cells

state rate, suggesting that the activation could take place throughand not in L1210 leukemia cells due to the absence of the
a S'OW conforma_ltional change of the enzyme to render the_ aCtiveenzyme tyrosinase, indicating that the cytotoxic effect of GHB
tyrc_)sm_ase. Optimum SDS Concentratlon. and phiresults in . __is dependent on the presence of tyrosinase. The antitumor effect
activation of the enzyme, Whergas very hlgh SDS concentration ¢ L-glutamic acid and-(p-hydroxyanilide), on B-16 melanoma
and pH=5 causes further_protem denaturation; in the presence was studied in vivo. In the presence of mushroom tyrosinase it
of SDS and pH=5 the active form of the enzyme is converted  hhipited DNA polymerase activity and its 3,4-dihydroxy
to an inactive ongFigure 4). The same reaction mechanism  gerivative inhibited thymine, whereas the 2,5-dihydroxy deriva-
operated in protease-treated tyrosinase isoforms, despite theijye inhibited uracil and leucin incorporation into nucleic acid
different kinetic features1@32). Latent mushroom tyrosinase gpqg proteins of melanoma cell&40). However, other results
appears to be sensitive to activation preparations containingingicate a negative aspect of the mushroom tyorsinase toward
tolaasin (129), which is a bacterial lipodepsipeptide produced cancer. Papaparaskeva-Petrides etldtl) found that tyrosinase

by the casual agent of brown blotch diseaBsgudomonas s responsible for enhancing the mutagenicity of mushroom
tolaasii (133). Another activator, 3-hydroxyanthranilic acid extract due to production of phenolic and quinoid compounds.
(HAA), was found to affect the enzyme activity by mimicking  Moreover, this mutagenic response was inhibited by catalase,
the effect of true diphenol, thereby acting as a diphenol substratesuperoxide dismutase, glutathione, and dimethyl sulfoxide,
(134). HAA significantly affects the monophenolase activity of which indicates the role of phenolic and quinoid compounds in
tyrosinase by shortening its lag time and increasing the catalyticthe generation of reactive oxygen species. A similar increase
activity of the enzyme. The activation brought about by several in mutagenicity was also observed with baked mushroom extract
seemingly unrelated substances is a phenomenon often attributed142). Aromatic hydrazines play an important role in the
to conformational changes of the enzyme molecule, solublization carcinogenicity of mushrooni43 144), so a number of studies

of the enzyme, or removal of an inhibitor. have been performed to find the relationship between hydrazines

CH
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Scheme 5. Tyrosinase-Mediated Drug Release Mechanism (151)
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and mushroom tyrosinase. The principal hydrazine consideredoxidized by mushroom tyrosinase as oxidation by enzyme is
to be a candidate for mediating the carcinogenicity of the the first step in the prodrug release mechaniSoheme %
mushroom is agaritineSEN-(y-L-(+)-glutamyl)-4-(hydroxy- (151). It was observed that the prodrug, which has close
methyl)phenylhydrazine]. Walton et all45) studied the structural resemblance with natural tyrosinase substrate, is an
mutagenicity of putative agaritine metabolites in the presence appropriate MDEPT candidate. The structural alteration (func-
of mushroom tyrosinase and found that among the metabolitestional group transformation or removal of steric bulky group
tyrosinase enhanced the mutagenicityNofacetyl-4-(hydroxy- via heteroatom) at the substrate’s oxidative site decreases the
methyl)phenylhydrazine. Recently, the same co-workers reportedrate of tyrosinase-catalyzed oxidation. In addition to the above
that the whole mushroom homogenate readily metabolizesclinical applications, Ourth and Renid55) were able to
agaritine, whereas the mushroom tyrosinase has the potentiabenerate antiviral activity against herpes simplex virus-1 using
to metabolize both agaritine amil-acetyl-4-(hydroxymethyl)- hemolymph phenol oxidase or mushroom tyrosinase under in
phenylhydrazine, in the latter case forming genotoxic metabolites vitro conditions.
(146). Agaritine is bioactivated by the loss of theglutamyl 5.4. Antioxidant Properties. The oxidation process has an
group, catalyzed by-glutamyl transpeptidase, to release free important role in energy production to fuel biological processes
hydrazine [4-(hydroxymethyl)phenylhydrazine], which is further in almost all living tissues. Oxygen free radicals are produced
oxidized to generate the 4-(hydroxymethyl)benzene diazonium during normal metabolism and at low concentrations have a
ion. It is interesting to note that the mutagenicity of agaritine is useful role in moduating gene expression and signal transduc-
much lower that that of its metabolite, 4-(hydroxymethyl)- tion, but a high concentration of these radicals is extremely
benzene diazonium iori45. The contribution of this pathway  harmful to DNA and other macromoleculegbg—158). In living

to the mutagenicity of ethanolic mushroom extracts (1417,) beings the uncontrolled production of free radicals leads to many
or the metabolism and/or carcinogenicity of hydrazines in diseases such as cancer, atherosclerosis, and rheumatoid arthritis
animals remains to be elucidated. as well as degenerative processes related with aging (159).

5.3. Prodrug Therapy. Malignant melanoma continues to  However, the presence of antioxidants in the diet helps to reduce
be a serious clinical problem with a high mortality rate among oxidative damage. Since ancient times mushroom has been used
the human beings and this high mortality rate is due to the failure as an essential component of the diet, so a number of studies
of melanoma cells to respond to cytotoxic treatment in the form have been made to investigate its antioxidant potential. Recently,
of radiation and chemotherapy. Thus, the metastatic melanomaShi et al. (60) have reported that the cold-water extracté.of
continues to challenge the researchers to find a systemichisporusprevented HO.-induced oxidative damage to cellular
treatment of cancer. To develop such a treatment with a selectiveDNA but were unable to identify the nature of the protective
cytotoxic response, it is necessary that it should interfere with mechanism. Later they (161) were able to correlate the geno-
the biosynthetic pathway, which converts tyrosine into melanin protective effect ofA. bisporuswith a heat labile protein (FlI
(148 149 by tyrosinase. This would allow selective conversion f-1), identified as tyrosinase, and the nature of the genopro-
of inactive prodrugs, modeled on tyrosine, into cytotoxic drugs tective activity of tyrosinase was found to be dependent upon
in melanoma cells. Such a selective strategy toward the treatmenthe hydroxylation of tyrosine to L-dopa and subsequent oxida-
of malignant melanoma is called melanocyte-directed enzyme tion of L-dopa to dopaquinone (162). This is quite interesting
prodrug therapy (MDEPT), which offers a highly selective drug because L-dopa is normally linked with toxic pro-oxidant
delivery system (150151). Various cytotoxic agents such as properties as it produces highly unstable electrophilic dopa-
phenol mustard 152), bis(ethylamine) mustardl%3), and (semi)quinones. On redox cycling these quinones produce
daunorubicin (154) were examined for their ability to be harmful oxy radicals, peroxides, semiquinones, and quinones
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(163, 164), which are responsible for antitumor activity and Ereq Ph* or Q

neurotoxic damage in Parkinson’s disease (based on treatment

with L-dopa). Furthermore, it was also found that the generation TYROSINASE N ECTROPE
of oxygen free radicals, produced from L-dopa in the presence + PHENOLS 3 A
of Cu(ll), is related with strand breakage of DNA under in vitro 02

conditions (165,166). However, the exact mechanism of the Ph

Eox

genoprotective effect of the L-dopa oxidation product generated
by tyrosinase is not completely understood. Besides having pro-
oxidant activity, L-dopa also stimulates a cellular antioxidant
defense mechanism under certain conditions. At low concentra- , ) )
tions it increased intracellular concentrations of the antioxidant Fi9ure 5. Reaction sequence for tyrosinase biosensor. Ph = phenol,
glutathione, thereby enhancing the free radical scavenging P = Phenoxy radical, and Q = quinone (190, 191).

capacity of the brain cells (167—169).

Enzymatic reaction Electrochemical reaction

which exploit the enzymesubstrate affinity for the detection

6. STUDIES ON IMMOBILIZATION OF MUSHROOM of pollutants in environmental samples. Numerous biosensors
TYROSINASE proposed for the detection of phenolic compounds are based

Enzyme immobilization is one of the important aspects of primarily on the phenol oxidizing enzyme, tyrosina$8g, 189).
biotechnology, and recent trends shows that it is equally viable Most of the work published in the literature refers to ampero-
in industries, too, as it lowers the production cost due to the metric biosensors as they have advantages of higher sensitivity
reusability of the enzymes. The various techniques used for and selectivity. The general mechanism of amperometric bio-
enzyme immobilization include entrapment in polymeric gels, sensors can be elucidated by the general reaction sequence
adsorption onto insoluble materials, encapsulation in membranes(Figure 5), which leads to an amplification of the signab,
cross-linking with bifunctional or multifunctional reagents, and 191). Biosensors with immobilized tyrosinase have been
linking to an insoluble carrier (170). prepared with solid graphitd 92,193) or composite electrodes

A number of attempts have been made by the various such as carbon past&90,192,194), epoxy/graphitel®5), or
researchers to explore future implications of entrapped tyrosinaseTeflon/graphite {96) and hydrophobic semisolid matricaS7),
for commercial production of L-dopa and for that tyrosinase but it was found that the solid graphite electrodes are more
has been immobilized on cellulose suppot), collagen sensitive than the composite electrodes and can detect micro-
membrane (172), polyacrylamide gel7@), CH-Sepharose  molar concentrations of phenols and catechd®2§. Another
(174), Enzacryl AA (75), copper—alginate gelL{6), nylon sensor for the determination of phenols in a continuous flow
tubing (177), hydroxyaluminumemontmorillonite complex (178),  system with a detection limit of 14 ppb has been developed
and chitosan flakes using glutaraldehyde as cross-linking agentusing mushroom tyrosinasel98). Liu et al. (99) used
(179 under various conditions. Recently, Munjal and Sawhney co-immobilization of mushroom tyrosinase and the mediator,
(180) immobilized mushroom tyrosinase by entrapment in Fe(CN)*", on Al,Os sol-gel membranes and reported high
alginate, polyacrylamide, and gelatin gels and reported that thestability of the enzyme with a high functional activity of>6
enzyme entrapped in gelatin has a higher activity yield, a greater 108 M. Recently, another highly sensitive sensor for sub-
storage life, and better thermal stability and, thus, can be usedpicomolar detection of phenols has been developed (193) by
for large scale L-dopa production, which is a commonly immobilization of mushroom tyrosinase in a positively charged
prescribed drug for the treatment of Parkinson’s disease. chitosan (N-deacetylated derivative of chitin) film on a glassy

In addition to the above industrial application, some co- carbon electrode, and the resulting sensor offered a high
workers used mushroom tyrosinase as a catalyst for the removasensitivity (150 nA/nM) for monitoring phenols. A capillary
of phenolic compounds from wastewatet81) and the extent ~ membrane bioreactor, using immobilized mushroom tyrosinase
of transformation is substrate dependeir&). The addition of for effective removal of phenols from the industrial effluents,
aluminum sulfate had little effect on the removal of colored has been prepare@0). To remove the colored quinone-type
products from phenol solutions treated with tyrosinase. All products of the reaction, a packed column containing chitosan
treated solutions of phenol and chlorophenols, except 2,4-was integrated into the system, and this provided a two-stage
dichlorophenol, had substantially lower toxicities with tyrosinase bioremediation, which resulted in almost complete removal of
as compared to other peroxidase enzym&8). Tyrosinase can  the colored quinones from the system. Another important
be effectively used for bioconversion of phenolic substrates by industrial application of mushroom tyrosinase reported byrEspi
covalent attachment to polymers (ethylene glycol derivatives), et al. (201) is the enzymatic synthesis of the diphenolic
which increase enzyme stabiliti§4). In the treatment of  antioxidant hydroxytyrosol (HTyr) that mainly occurs in virgin
phenols using tyrosinase a color change was observed, whicholive oil and olive oil mill wastewater (vegetative water). This
can be removed by cotreatment of tyrosinase with amino group diphenol was obtained from its low-cost monophenolic precur-
containing polymer such as chitosan, hexamethylenediamine sor, tyrosol, in the presence of both tyrosinase and ascorbic acid.
epichlorohidrin, and polyethyleneimine, the latter being more Although a fast chemical method is also available for HTyr
effective than chitosan. Immobilizing tyrosinase on cation synthesis, the cost of substrate is too high and the compounds
exchange resins and magnetite resulted in almost completeobtained need further purification to get rid of any possible
removal of phenols 185, 186). A two-step approach was contamination 202—204), so the enzymatic method could be
employed by Sun et al. (187) in which, first, phenols were used as an alternative and nonpolluting procedure to obtain
converted to quinones by tyrosinase and then chemisorbed ontdiTyr. The reaction synthesis is continuous, easy to perform,
chitosan, which resulted in effective removal of aimost all Uv- and adaptable to a bioreactor for industrial purposes.
absorbing materials from the effluent. These results show that
immobilized tyrosinase gave better results than free enzyme.7' SUMMARY AND CONCLUSIONS

Furthermore, for quantification and better removal of phenols,  The above studies show that mushroom tyrosinase continues
biosensors have been developed using immobilized tyrosinaseto be the subject of extensive research due to its easy availability
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and vast clinical and industrial importance. The role of tyrosinase

Reviews

Taken together, much more research on mushroom tyrosinase

in mushroom for causing browning is well established; browning is required to find the role of this enzyme in other unexplored
occurs due to enzymatic oxidation of phenols, resulting in the fields, which will be helpful in designing or improving
mushroom’s shorter shelf life and loss of nutritional value. This enzymatic activities for various applications.

implies that understanding of the activators and inhibitors, which
interconvert latent and active forms, is of crucial importance in
finding novel and more consumer-compatible approaches toward
regulation of the discoloration process. For this reason, there

has been an active interest among the researchers in this field

during the past three decades to identify better inhibitors for
mushroom tyrosinase. To achieve this goal, different types of

compounds from both natural and synthetic sources have been

investigated. Obviously, more efforts are still needed in this
direction so that better inhibitors can be identified. As various
contradictory reports are available in the literature regarding
the cause and relative extent of inhibition among various
compounds, more insight is required to establish a confirmed
structure and activity relationship. Furthermore, inhibitors from
natural sources have a great potential in the food industry, as
they are considered to be safe and largely free from adverse
side effects.

Besides being used in the treatment of some dermatological
disorders associated with melanin hyperpigmentation, tyrosinase
inhibitors have found an important role in the cosmetic industry
for their skin-whitening effect and depigmentation after sunburn.
However, more concrete studies with human tyrosinase from a
clinical point of view are required. Another important clinical
application of mushroom tyrosinase includess its role in the
treatment of vitiligo as the enzyme acts as the marker of this

disease; a number of studies have been conducted on animal

models, but still more research has to be done to cure vitiligo

in human beings. Recent studies indicated a possible negative
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